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A critical study of some elementary aspects of q-algebras is presented. The results 
are: (i) the q-algebras are related to para-Bose (para-Fermi) algebras only when 
both reduce to the usual Bose (Fermi) case, (ii) after performing a linear 
transformation of the operators A and A t that satisfy the q-algebra relation 
A A t -  qAtA =/,  a generalized version of Penney's theorem (in the sense that 
the new operators satisfy noncanonical commutation and anticommutation rela- 
tions) is obtained, (iii) the spectrum of one of the Hamiltonians of the system. 
is obtained from the correspondence principle, and (iv) a whole family of 
q-algebra Hamiltonians is exhibited. This family has the property that the 
noncanonical commutation relation is stable. 

1. I N T R O D U C T I O N  

1.1. The  p u r p o s e  o f  the  presen t  p a p e r  is to examine  a n u m b e r  o f  
s ta tements  tha t  have a p p e a r e d  in the  l i te ra ture  conce rn ing  the q-a lgebras .  
They  are" the  re la t ion  o f  q -a lgebras  to pa r a -Bose  a lgebras  (Sect ion  3); the  
ques t ion  o f  pe r fo rming  a l inear  t r ans fo rma t ion  o f  the  ope ra to r s  invo lved  
(Sec t ion  4); and  some de l ica te  po in ts  when  the l imit  q -> +1 is t aken  (Sect ion  
2). Besides  these,  a de r iva t ion  o f  the  spec t rum of  H ( B ,  D )  [see equa t ion  
(7b)]  is p r e sen ted  us ing c o r r e s p o n d e n c e  a rgumen t s  as in Born and  J o r d a n  
(1925). The ques t ion  o f  which  funct ions  qua l i fy  to p l ay  the role o f  Hami l -  
ton ians  is also answered  u n d e r  the r equ i remen t  o f  s tabi l i ty  o f  the  nonc a non i -  
cal c o m m u t a t i o n  re la t ion  (Sect ion  5). Sect ions  1.2-1.6 con ta in  the  def ini t ions  
and  ma in  results  re levant  for  the subsequen t  d iscuss ion.  

1.2. Ar ik  and  C o o n  (1976) and  Kuryshk in  (1980) i n t roduc e d  an a lgebra  
def ined  by  [ (A,  At)q will be ca l led  a q -p roduc t ]  

(A, A*)q =- A A t  - q A t A  = I (1) 
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where the operators A and A* are Hermitian conjugate of one another, I 
is the identity, and 0 <  q < 1 (Arik and Coon, 1976) or q - - - 1  (Kuryshkin, 
1980). In this note I will consider q - - 1 .  The special values q = + 1 , - 1  
yield the usual Bose and Fermi commutation relations. The number operator 
corresponding to (1) is given by Kuryshkin (1980) as 

nq = (1/2) lOglql[I + (q - 1)AtA] 2 (2) 

Remark  1.2.1. Although the number operator for operators that satisfy 
the usual Bose (and Fermi) commutation relation is well defined as nb = A ' A ,  
the number operator nq defined by (2) is easily seen to be ill defined 
for [q[-- 1. 

1.3. The algebraic scheme defined by (1) and (2) has been called the 
q-algebra by the Jannussis group (Brodimas et al., 1981). These authors 
studied the q-algebras using a bosonic realization of  the operators A and 
At; this means that A and A* are written as functions of a pair of operators 
d and d t that satisfy the usual Bose algebra: [d, dill_ =- dd t -  d i d  = L Once 
the operators A and A t are bosonized, it is concluded by Brodimas et al. 
(1981) that "with the help of the number operator n q , . . . ,  the following 
relations have been proved for para-Bose operators," 

[[ne, All_ = - A ,  ~nq, Ate_ = A* (3) 

Remark  1.3.1. Relations (3) define, in fact, the number operator nq. 
They are satisfied not only in the para-Bose case, but also in Bose, Fermi, 
para-Fermi, and more general cases in which A and A t are annihilation 
and creation operators (Kuryshkin, 1988). 

Remark  1.3.2. The validity of relations (3) does not de~end on the 
fact that A and A t are bosonized. When a bosonic realization of A and A* 
is used they must be recovered so as to be sure that the bosonization has 
been done consistently. 

Remark  1.3.3. The statement quoted above (Brodimas et aL, 1981) is 
shown below to be false because the operators A and A t are not para-Bose 
operators unless q = 1. 

1.4. A para-Bose and a para-Fermi algebra are defined by the double 
commutation relation ([[c*, c]]:~ = ctc • cc*) 

][[c t, c]]~, c]]_ = - 2 c  (4) 

where the operators c and c* are Hermitian conjugate of one another; the 
plus sign is for the para-Bose and the minus sign for the para-Fermi algebra. 
The number operator N is defined as 

N = (1/2)([[c, c*]• •  (5) 
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where p >- 1 is an integer that defines the order of the algebra labeling the 
irreducible representations. This is done as follows: let [0) be the unique 
vacuum of the Fock space in which c and c* act; then cc*lo)=plo>. The 
special value p = 1 reproduces the Bose (plus sign) and Fermi (minus sign) 
cases. From (4) and (5) it is evident that relations (3) are satisfied if (A, A*) 
are identified with (c, c*). 

Remark 1.4.1. If  relations (3) are valid, the operators A and A* will 
not automatically satisfy (4) and (5). It is shown in Section 3 that this occurs 
only for (q, p) = (1, 1) and ( -1 ,  1). 

1.5. Bosonization of Fermi, para-Bose, and para-Fermi algebras has 
been reported in the literature as a Bose representation of Fermi operators 
(Kademova, 1970; Kademova and Kfilnay, 1970; K~ilnay, 1977; Naka, 1978; 
Garbaczewski, 1985) and in connection with vibronic coupling in diatomic 
molecules (Schmutz, 1980). Also bosonization of more abstract algebras 
has been presented under the name of B-para algebras (Gonzalez-Bernardo 
et al., 1982, and references therein; Gonzalez-Bernardo, 1988). Since boson- 
ization is such an elastic formalism, it is tempting to relate para-Bose and 
para-Fermi algebras with q-algebras through the bosonization formalism; 
this is evident from the quotation in Section 1.2 from Brodimas et al. (1981). 
However, as is proved in this note, though these algebraic schemes are 
amenable to bosonization, the hoped-for relation does not exist for [q[ ~ 1 
(see Section 3). 

1.6. The simplest Hamiltonian introduced in para-Bose algebra is pro- 
portional to the number operator (5). Such a system has been studied under 
the name of the para-Bose harmonic oscillator (Mukunda et al., 1981). In 
Jannussis et al. (1982, and references therein), and Siafarikas et al. (1983, 
and references therein), a Hamiltonian is introduced in the following way: 
A and A* are expressed in terms of a pair of Hermitian operators B and 
D in the form 

A = [ h(1 + q)]-~/2[(mw)l/2n q- i(mw)-l/2D] (6a) 

A* = [h(1 + q)] - l /2[ (mw) l /2B  - i (mw)-~/2D] (6b) 

where m and w are real constants and i = x / z ]  . If  (1) is to be satisfied, it 
is found that B and D satisfy the noncanonical commutation relation (a 
commutator or anticommutator will be called noncanonical whenever it 
equals an operator that is not proportional to the identity) 

~B, D~_ = ihI + [ 2 i ( q -  1 ) /w(q+ 1)]H(B, D) (7a) 

where 

H( B, D) = D2/2m + mw2B2/2 (7b) 
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The function H(B, D) is called the Hamiltonian of  the system. The appear- 
ance of the second term in the right-hand side of (7a) justifies calling this 
commutation relation "noncanonical ,"  while the form of H(B, D) lends 
to the system the name "harmonic oscillator." In Section 5, I present a 
derivation of  the spectrum of  H(B, D) using the correspondence arguments 
of  Born and Jordan (1925). In the same section a whole family of  Hamil- 
tonians is exhibited requiring that the noncanonical commutation relation 
(7a) be stable. In Section 4 a study of general linear transformations of A 
and A* is presented; it is found that a general version of Penney's (1965) 
theorem is valid. 

2. BOSONIZATION OF q-ALGEBRAS. COMMENTS 

This section begins with a brief summary of the bosonization of A and 
A* as proposed in Brodimas et al. (1981). Then in a number of comments 
it is shown that the familiar Bose and Fermi cases, though included in (1) 
as particular cases, have to be handled carefully because on one hand they 
cannot be considered as the limits q-~ 1 (Bose) and q-+ -1  (Fermi) of the 
function fq(n) (see below) and on the other hand the number operator nq 
[see (2)] does not yield the well-known number operator nb= AtA of the 
Bose and Fermi cases in the limit Iql  1 

2.1. The Bosonization of Brodimas et al. (1981) 

The operators A and A t are written in the form 

A =fq(nb)d, A*= d*fq(nb) (8) 

where nb= d*d is the Bose number operator. The function fq(nb) is intro- 
duced so as to ensure that (1) is fulfilled. The Fock space on which A and 
A* act after being bosonized is spanned by kets In)-- C,(d*)n[0), where C, 
is a normalization constant and I 0) is the Bose vacuum ket which is annihi- 
lated by d. As is well known, In) is an eigenket of  nb with eigenvalue n. 
Acting with the above expressions for A and A* on In), it is found from 
(1) that 

f2(n)=(q"+l-1)/(n+l)(q-1),  n = 0 ,  1 , 2 , . . .  (9) 

If  q = 1, f~(n) = 1, so that A = d, A* = d*, that is, the operators A and A* 
coincide with the original Bose operators. 

If q = - 1 ,  A and A* are Fermi operators; in this case 

(n + 1)f2_1 = [1 + ( - 1 ) " ] / 2  (10) 

so that (n+l)f2_~ =cos2(rrn/2) [Cos2k(Trn/2) with k integer would do 
equally well. Naka (1978) presents the case k = 2] and therefore 

A=(nb+l)-l/2 COS(~nb/2)d, A*=d*(nb+l)-l/2 COS(~nd2) (11) 
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From (8) and (9) it is easily found that 

A*]n )=~n+ l~l/2ln+ l), A[n )=~n]~ /2 ln -1 )  (12a) 

A*a[n)  = ~n][n), nqln ) = n[n) (12b) 

where [[n~ = (q" - 1) / (q - 1). At this point the review of  the bosonization of 
Brodimas et al. (1981) is ended. The results (12a) justify calling A and A* 
annihilation and creation operators,  respectively, of  certain type of  particles 
with the ket In) having n such particles (Kuryshkin, 1980). 

Comment  2.1.1. The general expression (9) for f ~ ( n )  will now be 
examined as a function of  q in the limit n ~ .  Consider first Iql< 1: 

(n + 1)f2(n) --> (q - 1) -1 (13) 

showing that f2q(n) --> 0 when n --> co. 
I f  q > 1, f2q(n) --> cc when n --> ~ .  This, together with (13) a n d f 2 ( n )  = 1, 

show that, as a function of  q, f2q(n) has an essential singularity at q = 1. As 
a result, the Bose case is not obtained as the limit q--> 1 o f f , ( n ) .  The same 
is true for q--> - 1  because the Taylor series that leads to (13) leaves outside 
its convergence radius this value of q. The conclusion is that the Bose and 
Fermi commutat ion relations have to be handled separately as compared  
to other values of  q, al though in (1) they are included as particular cases. 

Comment  2.1.2. It can be argued that in certain situations the limit 
n-->co may be forbidden for Iql ~ 1. For this to happen a certain value of  
n, say m, should exist such that A*lm) = 0. This means qm+l = 1, so that q 
is an (m + 1)th root of  1. Since Iql ~ 1, no solution exists. The only case for 
which a finite number  of  kets is found is q = - 1 ,  for which A 2 = A .2 = 0; 
this shows that the limit (13) cannot be taken for q = -1 .  Because of this, 
the Fermi case is separated from other values of  q. 

Comment  2.1.3. At this point I would like to remark that the definition 
(1) of  a q-algebra does not include all possible q-products among the 
operators A and A*. To complete the multiplication table of  the q-algebra, 
( A , A ) q = ( 1 - q ) A  2, ( A - " , A * ) q = ( 1 - q ) A  .2, and ( A * , A ) q = A * A - q A A *  
have to be specified. Of  course, from (1), A*A - qAA* = (1 - q ) A * A  - q, but 
the other products cannot  be obtained from (1) and have to be given 
independently.  Once A and A* are bosonized, the matrix elements of  
(1 - q ) A  2 and (1 - q ) A  .2 are fixed, but the result cannot be written in terms 
of  A, A*, and I. As an example,  operating with A 2 on the bosonic ket In) gives 

A21n) = ( q Z n - I  _ qn _ q,-1  + 1)~/2/(q _ 1)In - 2) 

I f  (A, A ) q  -~ ( 1  - q ) A  2 is required to vanish, the only possibilities are q = 1 
(Bose) and A z = 0 (Fermi). Instead of completing the multiplication table, 
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specifying that the operator A t A  is diagonal allows determination of  all 
matrix elements of  A and A * (Kuryshkin, 1980). 

C o m m e n t  2.1.4. From what has been said in Comment 2.1.2 it follows 
that for any q r - 1  an infinite number of  kets is present (Kuryshkin, 1980). 
Of course, imposing the condition A t" = 0 for a certain value of n > 2 leaves 
only n kets, but this is an additional requirement. 

Other possibilities can be imagined, for instance, 

(1 - q ) A  2 = A m (14) 

with m a positive integer. If  this kind of  relation is considered together 
with (1), a bosonized version can be studied, but the eigenkets of  the 
operator nb are no longer useful because in this basis (14) is never satisfied 
(unless m = 2). Instead, eigenkets of the operator A would be more appro- 
priate (the q-coherent states); call them IK) with A I K ) = K [ K )  , then 
the allowed values of K are ]1 -q1-1/(m-2) e x p [ - 2 ~ r i l / ( m  - 2 ) ] ,  l = 0, 1 , . . . ,  
n - 3 ;  the state space is of  dimension m. The case of a finite dimension state 
space is considered in Kuryshkin (1980) in connection with the so-called 
q-algebras without interaction. 

C o m m e n t  2.1.5. Consider (12b) together with the definition (2) of  the 
number operator. If  Iq[ = 1, the basis of the logarithm is unity and therefore 
it is not a function any more because any argument may have as image any 
real number with no definite rule to establish the correspondence (in 
particular, the whole set of real numbers can be made to correspond only 
to zero and one). This is an additional argument that reinforces the result 
that the Bose and Fermi cases must be handled separately. 

3. RELATION OF q-ALGEBRAS TO PARA-BOSE AND 
PARA-FERMI ALGEBRAS 

Para-Bose and para-Fermi algebras are defined by (4) and (5) (see 
Section 1.3). Replacing (5) in (4), relations (3) are obtained with nq replaced 
by N. I adopt  the point of  view that (3) does not define a para-Bose or 
para-Fermi algebra if the number operator is an arbitrary function of the 
operators c and ct. Only if N is given by (5) is the algebra para-Bose or 
para-Fermi. This definition, adopted in the current literature, can (of course) 
be modified if there are compelling reasons to do so; at this stage of  the 
study of para-Bose and para-Fermi algebras this does not seem to be the case. 

I will now look for those values of q such that the operators A and 
A*, which in this section are identified with c and c* that appear in (4) and 
(5), satisfy simultaneously (1) and (4). It is proved that this happens only 
for q = + l .  
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3.1. Para-Bose Algebras and q-Algebras 

Assume that A and A t satisfy (1) and at the same time are para-Bose 
operators of  order p. Then the following algebraic relations must be valid 
simultaneously: 

AA* - qA*A = I, A*A 2 - A2A * = - 2 A  (15) 

From (15) it follows that 

(1 - q2)A* A2 = (q - 1)A (16) 

which is identically satisfied if q = +1. Consider now q # 1 and operate with 
(16) on a ket In); using (8) and (12), the result is 

q n + q n - l = 2  (17) 

which should be valid for any n -> 2 and fixed q ~ 1; notice that operating 
with (16) on 10) gives 0 = 0, while operating on [1) gives q = 1, which is not 
admissible because the case under consideration has q ~ 1. It is easily 
verified that no value of q ( r  satisfies (17). The conclusion is that the 
operators A and A* satisfy (1) and the para-Bose commutat ion relation 
only when both schemes reduce to the usual Bose case, i.e., q = +1, p = 1. 
The value p = 1 follows from (1) and (5) applied to 10) (see Section 1.4 for 
the definition of  p). 

The following is an alternative proof  that q-algebras and para-Bose 
algebras are unrelated (unless q = 1, p = 1). To avoid confusion, I will return 
to the para-Bose operators c and c* [as in (4)]. It is well known that the 
operators (Jordan, et aL, 1963) J0 = (1/4)[[c, ct~+, J1 = ( i / 4 ) ( c  . 2 -  c2), and 
J2 = (1 /4) (  c*2+ c2) satisfy 

~J2, JoB- = i J1, ~Jo, J,]- = i J2, ~J~, J2~ = - i Jo  (18) 

I f  I ask the question, is it possible to write J0, J~, and J2 as functions of  A 
and A* that satisfy (1)?, the answer is no. 

Proof  Consider the basis of  eigenstates of  the operator Q = A t A  (in 
particular, this basis can be the bosonic kets that have been used up to 
now) where A and A* satisfy the q-algebra relation (1). Let the vacuum be 
10). Write Jo, J l ,  and .]2 as 

d o I + d l A +  j o  ~ o o o t o 2 o ~2 d2A + d3A + d 4 A  + d~ 

= d o i + d l A + d ~ A  ~ 1 2 1 ~'2 J1 1 l + d3A  + d4A + d t A * A  

j 2 = d 2 i + d ~ a + d ~ A  , 2 2 2 ,2 + d 3 A  + d 4 A  +d25AtA 

where d j, i = 0, 1, 2, j = 1 , . . . ,  5, are coefficients to be determined from the 
commutators  (18). Replace the expansions for Ji, i = 0, 1, 2, in the three 
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commutators  and take matrix elements in the chosen basis. It is shown after 
a tedious but straightforward algebra that the set of  coefficients is identically 
zero. �9 

3.2. Para-Fermi Algebras and q-Algebras 

Assume that A and A t satisfy (1) and at the same time are para-Fermi 
operators of  order p. Then the following relations must be simultaneously 
valid: 

AA* - qA*A = I, A t A  2 - 2 A A * A  + A e A  * = - 2 A  (19) 

From (19) it follows that 

(q - 1)2A*A 2 = - ( 1  + q ) A  (20) 

which is satisfied without violating (1) if q = - 1  and A 2 = 0 ,  that is, A and 
A + are Fermi operators. The value q = + 1 is explicitly excluded because in 
this case A = 0  and (1) is violated. 

I f  ]q] # 1, acting with (20) on In) and using (8) and (12) gives the result 

q" - q " - I  = - 2  (21) 

which should be valid for any n ->2 and Iql ~ 1. It is easily verified that no 
value of q ( r  satisfies (21). Therefore, the operators A and A* satisfy (1) 
and are para-Fermi operators only for q = - 1 ,  p = 1, i.e., for the Fermi 
commutat ion relations. As before, p = 1 follows from (1) and (5) applied 
to [0). 

3.3. An Explicit Example 

Consider the operators (Jackson, 1951; Arik and Coon, 1976; Jannussis 
et al., 1983) Dq and T which act on a polynomial  P ( x )  of a real variable 
x a s  

DqP(x )  = [ P ( q x )  - P ( x ) ] / ( q  - 1)x, T P ( x )  = x P ( x )  (22) 

It is easily verified that these operators satisfy the algebraic relation (1), 
D q T -  qTDq = L The operator  Dq is related to D = d / d x  by (Jackson, 1951; 
Jannussis et al., 1983) 

D q = ( q x D - - 1 ) / ( q - - 1 ) x  (23) 

so that both x D  and xDq have x m as eigenfunction with eigenvalues m and 
(qm _ 1)/(q - 1), respectively. 

I f  Dq and T are required to satisfy the para-Bose algebraic relation, 
it follows that 

[[[[ T, Dq]l+, T ] _ x "  = qm( q + 1)xm+l (24) 

which equals 2x m+l only if q = 1. 
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4. L I N E A R  T R A N S F O R M A T I O N S  OF A A N D  A t 

In equations (6a), (6b) the transformation of A and A t in terms of 
Hermitian operators /3 and D is presented. As a result the noncanonical  
commutat ion relation (7a) is obtained with H(B,  D)  as in (7b). In this 
section, I tackle the question of performing a general linear transformation 
(in fact, a Bogoliubov transformation) of  A and A t [see (25) and (38) 
below] with the purpose of determining all product  relations satisfied by 
the operators involved [13 and D in (25); /3 and B t in (38)]. Particular 
emphasis is placed on looking for those situations in which the product  
relation is a commutator  or an anticommutator.  

The main results of  this section are: 

1. I f  A and A t are written in terms of two Hermitian operators /3  and 
D, then (a) B and D do not satisfy an ant icommutat ion relation (noncanoni- 
cal); (b) /3  and D satisfy a commutat ion relation (noncanonical) if q ~ -1 .  

2. I f  A and A t are written in terms of  one opera tor /3  and it Hermitian 
conjugate B t, then (a) B and B t do not satisfy a commutat ion relation 
(noncanonical);  (b) /3 and /3 t satisfy an ant icommutat ion relation (non- 
canonical) if q ~ 1 and lal = Ibl (see Section 4.2). 

3. Product relations that are neither a commutator  nor an anticommu- 
tator are allowed in both cases for any value of q. 

Two cases are considered: (a) B and D are Hermitian operators 
[a particular example is given by equations (6a), (6b)] and (b) B = Dr. 

4.1. Case (a) 

A and A t are written in the form 

A = a B + b D ,  A t = a * B + b * D  (25) 

where a and b are complex constants and the star indicates complex 
conjugation. The transformation (25) is assumed to be invertible. Replace- 
ment of  these expressions in (1) gives 

(BD + e~YDB) - qe~Y(BD + e- i fDB)  = ( 1 / a b * ) I  - [(1 - q ) /ab*]H  (26) 

w h e r e  H = la12/32 +lb[2O 2 and e ~i= a ' b l a b * .  

4.1.1. I f  e ~y= - 1 ,  q # - 1 ,  (26) reduces to 

lIB, D ] ] _ = [ 1 / a b * ( l + q ) ] I - [ ( 1 - q ) / ( l + q ) a b * ] H  (27) 

I f  q = - 1 ,  13 and D can be chosen so as to satisfy [[/3, D]] = / ,  but in this 
case H(/3, D)  = 1/2ab*. The particular values a = [mw/  h ( l  + q)]l/2 and 
b = i [ h ( l + q ) m w ]  -1/2 with m and w real bring (27) to 

~ B , D ~ _ = i h I + [ 2 i ( q - 1 ) / w ( q + l ) ] ( D 2 / 2 m + m w 2 B 2 / 2 )  (28) 
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which is called the noncanonical  harmonic oscillator in Jannussis et al. 
(1982) and Siafarikas et al. (1983). The function 

H( B, D) = D2/2m + mw2B2/2 

is identified as the Hamil tonian of the system, as was mentioned in Section 
1.5; I return to this in Section 5. I f  m and w are regarded simply as a pair 
of  parameters  not necessarily real, then (28) includes all cases considered 
in (27). A commutat ion relation similar to (28) is studied by Saavedra and 
Utreras (1981); see also Talukdar and Niyogi (!982). 

Remark 4.1.1a. Since eil = - 1 ,  the phases of  a and b, fa and]b,  respect- 
ively, are related by Jb =fa+(n+ 1/2)7r. From this ab* = lallbti(-1)"; 
replacing this in (27) and asking if the resulting equation 

( l+q)i lal lbl(-1)"(BD-Dn)+(lal2n2+lbl2D2)=I (27a) 

can be factorized in the form ( r B + s D ) ( u B + v D ) = I  with u, r, u, and v 
constants, it is found that only for q = 0 is this factorization possible. 

Remark 4.1.1b. Since q # - 1 ,  A and A* are not Fermi operators. There- " 
fore, the result (27) shows that Fermi operators are not related to noncanoni- 
cal Bose operators or, since the transformation (25) is assumed to be 
invertible, noncanonical  Bose operators cannot be expressed in terms of a 
finite number  of  Fermi operators. In a sense, this is a generalization of 
Penney's  theorem (Penney, 1965) that Bose operators cannot be constructed 
by means of  a finite number  of  Fermi operators. The relation to Penney's  
theorem is only "in a sense" because what Penney's theorem proves is that 
Bose creation and annihilation operators cannot be expressed in terms of 
a finite number  of  Fermi creation and annihilation operators. In Sections 
4.1.1 and 4.1.2, B and D are not creation and annihilation operators. 

4.1.2. I f  in (26) eiy = +1, the result is (q # 1) 

lIB, D]]+ = [1/ ab*(1 - q) ]I - H /  ab* (29) 

From e r  +1 the phases of a and b, fa and Jb, respectively, are related 
by fb  =fa + nTr, with n an integer. As a consequence, ab*= lallbl(-1)", so 
from (29) 

[[alB+ ( - 1 ) ' l b l D 3  2 = I / ( 1 -  q) (30) 

and from here 

lalB = ( - 1 ) " + l l b l D  + I / ( 1  - q)1/2 (31)  

The expressions for A and A* that follow from (31) are 

A = [ b + ( - 1 )  "+1 er ~/2 (32a) 

A*= [ b * + ( - 1 )  "+~ e-~albl]D+ e-':~I/(1 _ q ) , / 2 =  +e-~fai/(1 _q)1/2 (32b) 
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Relations (32a) and (32b) show that A and A t are proportional  to the 
identity. Operators such as (32a) and (32b) are trivial and are not considered 
in q-algebras (Kuryshkin,  1980). The conclusion is that nontrivial operators 
A and A* cannot be represented as in (25) with B and D satisfying an 
ant icommutat ion relation such as (29). 

Remark 4.1.2a. Since q ~ 1, A and A* are not Bose operators and thus 
Bose operators are not even considered as candidates to be written in terms 
of  operators that satisfy an ant icommutat ion relation (noncanonical).  The 
result is actually much more general and states that for no value of q are 
A and A * expressible as functions of  B and D that satisfy (29). 

4.1.3. Since for e 'y = +1 the factorization (30) is possible for any value 
of  q and since (27) factorizes only for q = 0, it is natural to look for other 
values o f f  and q such that (26) factorizes. Knowing f, one can relate the 
phases of  a and b by 

fb :)Ca + f / 2 +  n~" (33) 

where n = 0, 1, - 1 ,  2, - 2 , . . . .  From (33), ab* = [al I b l ( - 1 )  e e - 's /=,  so  that 
(26) reduces to 

( - 1 ) ~  Ibl(1 + q2_ 2q cos f )1 /2(BD e - i t - {  - DR e it) 

+ (1 - q)(larB2+ Ibl=O =) = i (34) 

where tan t = (1 + q ) / ( 1 -  q ) t a n  f / 2 .  Equation (34) factorizes if 

1 + q2_2q  cos f =  (1 - q)2 (35)  

which implies 

Therefore, only for 
exactly the two cases found above. I f  q = 0, the factorization reads 

[[a[B + ( - 1 ) "  eiS/2[blD][[a[B + ( - 1 ) "  e-g/2lb[D] = I 

q(1 - cos f )  = 0 (36) 

q = 0  or f=2n~r  is factorization possible; these are 

(37) 

4.2.  Case  (b)  

A and A t are written as linear combinations of  one operator B and its 
Hermitian conjugate B t, 

A = a B + b B  t, A t = a * B t + b * B  (38) 

where a and b are complex constants and the transformation (38) is assumed 
to be invertible. Replacement of  (38) in (1) gives 

BB (lal 2 -  qlb] 2) + BtB(Ib[ 2 - qla[ ~) = I - (1 - q)(ab*B2+ a*bB t2) (39) 
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I f  [a[ 2 -  qlbl2~ O, (39) is a particular case of  the generalized q-quantization 
(Kuryshkin, 1980). A commutator  does not appear  in (39) unless q - - + 1 .  
On the other hand, an ant icommutator  appears  if lal = Ibl or q - - - 1 .  The 
result for [a[ = [b] is (q # 1) 

lIB, B*]]+ = I/[la[2(1 - q)] -(ei(fa--fb)B2+ e-i(fa-fb)B*2) (40) 

which factorizes as 

( er + eir~ e - ~  B + e-~Ya B t) = I /[lal2( 1 - q)] (41) 

Defining 

U = [a[(1 - q)l /2(er  eifbB *) = (1 - q)l/2m 

we find that (41) implies 

UU* = I = U* U (42) 

and the operator  U is unitary for any value of q ~ 1. For q = - 1  and la[ ~ Ibl 
a factorization similar to (41) is not obtained. 

Remark 4.2.1. I f  q = +1, then A and A* are Bose operators; the same 
is true for B and B*. I f  q ~ 1, a noncanonical  ant icommutator  is possible, 
showing that a finite number  of  noncanonical  Fermi operators do not form 
a Bose opera to r - -Penney ' s  theorem (Penney, 1956) again, but for the case 
of  (noncanonical) ant icommutator  relations. In this case the relation to 
Penney's theorem is closer than in Section 4.1 because B and B* can be 
thought of  as annihilation and creation operators, respectively. (At this 
point I would like to thank A. J. K~ilnay and C. A. Gonzalez-Bernardo for 
calling to my attention Penney's theorem.) 

4.3. Equation (26) can be written in the form (for any value of q and 
of  the constants a and b) 

BD + e '~DB = [ I  - (1 - q ) H ] /  ab*(1 - q e ~f ) (26a) 

with e i c =  (e ~f- q ) / ( 1 - q  e~Y). The left-hand side of  (26a) shows that the 
operators B and D obey an algebra whose product  is defined as (B, D)  G = 
B D +  et~DB; this product  reduces to a commutator  for any value of q if 
e ~r= - 1  and to an ant icommutator  if e r  +1. For other values of  e g the 
product of  the so-called intermediate statistics is obtained (Wilczek, 1982; 
Wu, 1984). In this sense it is apparent  that the q-algebras include as 
particular cases a large group of algebras which, as has been shown in these 
notes, does not include para-Bose and para-Fermi algebra when p ~ 1. 

When A and A* are expanded as in Section 4.2 [see (38)] then B and 
B* satisfy a q-algebra relation if ]a[2# q[bl 2 and [b[2~ q]a[ 2. 
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4.4. As a conclusion of this section, I note that the operators A, A* 
cannot be represented as a linear combination of  two Hermitian operators 
[case (a)] that satisfy a noncanonical anticommutation relation or two 
operators that are Hermitian conjugate of  one another [case (b)] that satisfy 
a noncanonical  commutation relation. In the first case A and A* are multiples 
of  the identity, while in the second case A and A* vanish. Conversely, the 
product AA t -  qA*A can be transformed into a commutator [case (a)] if 
q # - 1  and the constants a and b satisfy e r  or an anticommutator 
[case (b)] if q ~ 1 and the constants a and b satisfy lal = Ibl. These results 
are a generalization of  Penney's theorem in that noncanonical commutation 
or anticommutation relations are involved. Also, intermediate statistics are 
included in the q-algebras, as pointed out in Section 4.3. 

5. H A M I L T O N I A N S  IN q-ALGEBRAS 

As mentioned in the preceding section, the quadratic function 
H(B, D) = D2/2m + mw2B2/2 defined in (7a) is identified in Jannussis et 
al. (1982) and Siafarikas et al. (1983) with the Hamiltonian of the system 
whose dynamical variables are B and D. In terms of A and A*, H(B, D) 
has the simple form 

H(B, D) = [hw(q+ 1)/4][[A, A*]]+ (43) 

with eigenvalues [from (12)] (Jannussis et aL (1982); Siafarikas et al. (1983)) 

En = (qn+l + qn _ 2)hw(1 + q)/4(q - 1) (44) 

For q = +1, En = hw(n + 1/2). 
The above procedure suggests the identification of Ha = [a12B2+ Ibl2D 2 

in case (a) and Hb = ab*B2+a*bB .2 in case (b) with the Hamiltonian of 
the corresponding system. The disadvantage of  such an attitude is that all 
cases in which A and A* satisfy the q-algebra relation (1) correspond 
[through transformations (25) or (38)] to systems whose time evolution is 
governed by the same generic quadratic function, thus hinting that the 
q-algebras describe one and the same system (at least from a mathematical 
standpoint). However, the above will be true if H(B, D) is the only function 
that can play the role of  a Hamiltonian; this section is devoted to proving 
that this is not the case and to exhibit by explicit construction another such 
function. A second aim of this section is to rederive the spectrum (44) by 
imitating the procedure of Born and Jordan (1925) to obtain the harmonic 
oscillator spectrum and the matrix elements of  B and D. The whole calcula- 
tion will be performed using the function H(B, D)=  D2/2m + mw2B2/2. 
In what follows H is written instead of H(B, D). 
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Remark 5.1. The system with Hamiltonian operator H is called the 
noncanonical  harmonic oscillator in Jannussis et al. (1982) and Siafarikas 
et al. (1983). The reason for this name is the formal similarity of  H with 
the Hamil tonian of the usual harmonic oscillator. At this point it is appropri-  
ate to ask whether a physical system is defined by a particular Hamiltonian 
together with a set of  commutat ion relations or by a system of (in general 
coupled) differential equations. I f  the evolution equations are considered 
more basic than the Hamil tonian with the commutat ion re la t ions- -a  point 
of  view adopted in this no te - - then  to a given set of  differential equations 
may be associated more than one set of  commutat ion relations, once a 
Hamiltonian is given. This point has been discussed by Wigner (1950), 
Yang (1951), Okubo (1980), and Palev (1982), among others. As far as the 
evolution equations are concerned, the equations obtained for B and D 
(see below) correspond to an anharmonic oscillator which is called non- 
canonical by Jannussis et al. (1982) and Siafarikas et al. (1983) due to the 
form of  the commutator.  Of  course, it is possible to ask whether there exists 
any function Z(B ,  D)  that can play the role of  a Hamiltonian and that 
generates the usual harmonic oscillator equations once the noncanonical  
commutat ion relations (7a) for B and D are taken into account. The answer 
is negative if the noncanonical  commutator  is to remain stable. Once the 
results of  Section 5.1 are known, it is found that Z(B ,  D)  is nondiagonal  
in the basis that diagonalizes H. As a result, the commutator  [[Z, HI]_ does 
not vanish and therefore, at least under the conditions of  this note, a 
harmonic oscillator is not obtained. I f  the characteristics of  the spectrum 
of  the Hamil tonian are taken as a criterion that defines a physical system, 
then, as is evident from the spectrum (44) of  H, the eigenvalues are not 
equally spaced as should be in the case of  the usual harmonic oscillator. 
From what has been said in this Remark, a noncanonical  harmonic oscillator 
is a new physical system that reduces to the usual harmonic oscillator when 
q = 1 and should not be considered as a generalization of  it. 

5.1. Rederivation of the Spectrum of H(B, D) 

The time-evolution equations of  B and D that satisfy (28) with the 
Hamiltonian (7b) are 

= d B / d t  = {D + (K/hw) l[O,  H]]+}/m (45a) 

D = d V / d t  = -mwZ{B + (K/hw)[[B,  H~+} (45b) 

which for q = +1 reduce to the usual harmonic oscillator evolution equations 
[K = ( q -  1 ) / ( q +  1)]. The matrix elements of  B and D satisfy, from (45a), 
(45b), and (28), 

n jk  = [Djk "[- (K/hw)(DjmHmk + Hj,,Dmk)]/m (46) 
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EI~k = -mw2[Bjk + ( K /  hw)(BjmHmk + HjmBmk)] (47) 

BjmD,,k - DjmBmk = ih~jk + ( 2iK / w ) I--Ijk (48) 

Following the correspondence arguments of  Born and Jordan (1925), 
write for the matrix elements of  B, D, and H:  Bjk(t)= Bjk e27 i~(~k)' and 
Djk(t) = Djke 2'~i~(jk)', and /-/~k, respectively. The coefficients Bjk and Djk are 
to be determined from (46)-(48). Define the frequencies v(jk) as usual by 
hv(jk)  = ~ - Hk, where ~ - / - / j j  are the diagonal matrix elements of  H. In 
order to satisfy (48) w h e n j  ~ k, H must be diagonal; in this basis, equations 
(46) and (47) reduce to 

and from here 

/~jk = [1 + (K/hw)(I-lj  + Hk)]Djk/m 

/)jk = --row2[1 + (K/hw)(I-I~ + Hk)]Bjk 

(49) 

(50) 

2~rv(jk) = +w[1 + ( K /  hw)(I-I~ + Hk)] (51) 

The plus sign is for j >  k and the minus sign for j < k and it has been 
assumed that the energy eigenvalues are ordered in such a way that ~ > Hk 
if j >  k. As a result of  (51), there are at most two values of k for a given j 
(k = j  + 1); therefore, the matrix elements of B and D vanish unless k = j  + 1. 

At this point the stage is set to derive the following results: if k = j +  1, 

I-Ij+l = hw( q + 1) /2+  q/-/j (52) 

= mw:(IBjj+,12+ [njj_,l 2) (53) 

In j j§  = = Injj_ll= + h /2mw + g I l j /  mw 2 (54) 

the minimum value o f j  is j = 0 ;  from (53) and (54) it is found that 

I n o l r  = h ( q + l ) / 4 m w ,  Ho = hw(q+ 1)/4 (55) 

The result for H0 coincides with (44) for n = 0. For arbitrary j, it is found that 

J 
IBjj+ll2=[h(q+l)/4mw] • q" 

r=0 

Hj = [hw(q + 1)/4(q - 1)](q J+l+ qJ - 2 )  (56) 

which completes the derivation. 

Remark 5.1.1. The spectrum of  H(B,  D) may also be obtained if instead 
of  equations (45a), (45b) the evolution equations of  the usual harmonic 
oscillator (/3 = D/m,  19 = -mw2.B) are used together with the noncanonical 
commutation relation (28). This curious result, however, does not make 
sense, because the frequency condition for the usual harmonic oscillator is 
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not fulfilled with the spectrum (44) [or (56)]. The same spectrum is obtained 
in both cases because a similar relation between the matrix elements of  B 
and D holds, namely, Dj+1j= imwBj+lj, and because the matrices that 
represent B and D have the same structure. 

Remark 5.1.2. Once the results (56) are known, an operator  Z(B, D) 
can be determined so that the evolution equations for B and D are those 
of  the usual harmonic oscillator. For this to happen Z(B, D) must satisfy 

lIB, ZI]_ = - [ ( q  - 1)/mw(q+ 1)][[D, H]l+ (57) 

liD, Z]I = mw(q - 1)/(q + 1)lIB, HI]+ (58) 

and if the matrix elements of  Z(B, D) are computed,  it is found that it is 
not diagonal and that its commutator  with H does not vanish. 

5.2. Other Hamiltonians 

Any function h(B, D) that plays the role of  a Hamiltonian of the 
q-algebras will be required to commute with H. In this way the commutat ion 
relation (28) is stable. As a consequence of the results of Section 5.1, the 
function h(B, D) has to be diagonal on the basis in which all the foregoing 
calculations were done. This is possible if h(B, D) contains terms that 
involve only an even number  of  factors B and D if represented as a 
polynomial  or a series expansion. A particular case is evidently H itself. 
As another  example,  consider the function (a,/3, y constants) 

h (B, D)  = aB4+/3D4+ y(BDBD + DBDB) (59) 

This function can be reshaped, using (28), as 

h(B, D) = olBg-F [3D4-F y(B2D2 + D2B 2) + hy( ~ + K H / w )  

- (2iKy/w)(BHD - DHB) (60) 

This Hamiltonian has matrix elements that connect j ~ j  + 4, j + 2, j, j - 2, 
j - 4  only. In order that it be diagonal the matrix elements j ~ j + 4  and 
j->j+2 must vanish; these conditions fix two of the coefficients c~, /3, 
and 3'. The results are 

OL = [~m 4w 4, ]/= I~m2w 2 (61) 

so that h(B, D) reduces to 

h(B, D)=ClmZ[4HZ+h2w2+K'hwH-2iKw(BHD-DHB)] (62) 

which is a function of H (the first three terms) plus a term proport ional  to 
B H D -  DHB. To prove that this last term is not proportional  to /4 ,  compute 
the (j , j)  matrix element; the result is 

(BHD - DHB)jj = 2imw(Hj+lj+llBjj+ll 2 - Hj_lj_,IBj_Ij] 2) (63) 



Comments on q-Algebras 75 

which, after use of  (56), gives 

( B H D  - D H B ) j j  = [ih (q + 1)/2](H2j+l 2j+, + H2j2j 

+ H2j-12j-, +/-/jj - / - / j - ,~- , )  (64) 

which cannot be written as the (j, j )  matrix element of  a function of H. 
From this example,  the general pattern to construct Hamiltonians is evident. 

6. C O N C L U D I N G  R E M A R K S  

A number  of  points concerning q-algebras and their relation to para- 
Bose and para-Fermi algebras have been clarified. Also, the results of  
performing a linear t ransformation in operator  space have been explored; 
it was found that a generalization of  Penney's theorem is possible. Finally, 
a family of  q-algebra Hamiltonians has been exhibited by explicit construc- 
tion of one of  them and hinting that the way of  constructing others follows 
the same pattern. Having at one's disposal a number  of  Hamiltonians helps 
to establish an eventual connection between q-algebras and physical 
systems. This is the main reason to explore the existence of  q-algebra 
Hamiltonians other than H ( B ,  D) .  

As far as consistency is concerned, it is easy to check that once the 
matrix elements of  B and D are known [see (56)] the results (12a), (12b) 
for the matrix elements of  A and A* are recovered. Also, it is found that 
the time evolution equations for A and A* are 

ih d A /  dt =- ihA = (A, H)q  = A h w ( q  + 1)/2 (65) 

- i h  d A ~ / d t  = - - i h A *  = (1-1, A*)q = A * h ( q +  1)/2 (66) 

The equation for A t has this form, so that it coincides with the Hermitian 
conjugate of  A. It is also found that since H is a t ime-independent operator,  
/ : /=  0 does not coincide with (H,  H)q  = (1 - q ) H  2. This is a situation similar 
to the one found when classical mechanics is expressed in terms of  symmetric 
brackets; in fact, in this case the time evolution equation is obtained from 
the symmetric brackets only for the coordinate and momentum,  but not for 
an arbitrary function of these dynamical variables (see Franke and K~ilnay, 
1970). 
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